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This paper reviews the theory of anomalous triple gauge boson couplings and their
effects upon W+W ™~ production at LEP2 energies. The gqg7v, decay channel is stud-
ied in detail and analytical expressions for the differential cross-section are presented.
The problem of reconstructing ggrv; events is outlined and an improved method for
recovering the tau’s production angles from its decay products is introduced.



Chapter 1

Introduction

The Large Electron Positron (LEP) accelerator at CERN is now operating with beam
energies greater than 80 GeV. Above this threshold it is kinematically possible to create
pairs of real W+ bosons! in the centre of mass frame. Experiments in this new energy regime
are collectively referred to as LEP2 to distinguish them from previous LEP research carried
out with 45 GeV beams.

WTW ~ pair production is of particular interest because the process involves a contri-
bution from the coupling of three gauge bosons at a single vertex (ete™ — (Z°7)virtwal —
W*W ). The existence and form of these couplings are predicted by the standard model
of particle physics: but they have not previously been well measured experimentally. This
is because, until recently, only indirect, model-dependent measurements have been possible.
LEP2 provides a unique opportunity for a more precise study 2.

It is expected from theoretical considerations [8], [11], [12] that new physics (beyond
our current standard model) must operate in this bosonic sector at some, as yet unknown,
energy scale. This motivates a rigorous search for deviations from the predicted triple gauge
boson couplings (TGC’s).

If present, anomalous couplings will alter the effective electromagnetic moments of the
W bosons, the total number of W pairs produced, their angular distributions and those of
their decay products. Just as measurements of the anomalous magnetic moments of the
neutron and proton? led to the search for, and discovery of, nucleon substructure, so the
measurement of the moments of the W boson may hint at new physics possibilities.

This paper focusses on the effects of anomalous TGC’s on one possible decay channel
of a W pair; that of qqrv;.

'Mw ~ 80.33 GeV.

2To date, those direct measurements made at the Tevatron pp collider have placed relatively loose bounds
on the couplings [4].

8Carried out by O. Stern in 1933.



Chapters 2.1 and 2.2 deal with the process of W pair production within and beyond
the standard model respectively. The latter discussion introduces the concept of anoma-
lous couplings and their physical origins. Chapter 2.3 presents the helicity formalism as a
tool for studying the spin states of particles, which is then used to calculate the angular
distributions and cross-sections for W pair production shown in Chapter 2.4. Chapter 3 is
mainly concerned with the production of tau leptons from W decay and the dependence of
the cross-section on the anomalous TGC’s we would like to measure. Some details of the
single pion decay mode of the tau are also given. The implications for further work in this
area are summarised in Chapter 4.



Chapter 2

WTW~— Production

2.1 Standard Model

The standard model (SM) of particle physics partitions all observed, fundamental particles
into one of three groups: leptons, quarks and gauge bosons.

Leptons are fermions (particles with half integral spin) which interact with other matter
via the electromagnetic or weak ! forces only. There are three generations of leptons, each
consisting of one electrically charged and one electrically neutral fermion. The charged
leptons are the electron, muon and tau(on) (e, s, 7). The neutral leptons are the associated
neutrinos (ve, vy, vr). Their properties are summarised in tables 2.1 and 2.2.

Lepton Mass (MeV) Mean Lifetime
e 0.51099907 + 0.00000015 > 4.3 x 108yr
o 105.658389 & 0.000034 | (2.19703 + 0.00004) x 10 5s
T 1777.05% 050 (290.0 + 1.2) x 10 s

Table 2.1: Properties of charged leptons.[2]

Lepton | Mass (MeV) | (Mean Lifetime)/Mass
Ve — > 7 x 10%s/eV (solar)
vy | <0.17(90%CL) | > 16.45/eV (90%CL)
v, | < 18.2(95%CL) —

Table 2.2: Properties of neutral leptons.[2]

!The label ‘weak’ refers to the short-range nature of the interaction.



The second group of fermions in the SM experience the strong force in addition to the
electroweak 2 force. Generically, particles which undergo strong interactions are referred to
as hadrons. The fundamental (indivisible) hadrons are known as quarks. These, like the
leptons, have three generations, where each generation contains a pair of quarks.

The standard model explains the forces exerted by one particle upon another as a
consequence of the exchange of one or more gauge bosons (v, Z°, W+, W™, g). The gauge
bosons propagate information about the electromagnetic (v, Z°%), weak (W*, W, Z°) and
strong (g) quantum numbers of a particle between points in space-time. The existence of
gauge bosons arises naturally in the theory of the SM when we attempt to conserve the
quantum numbers (i.e. electric charge, weak isospin and strong colour charge) of leptons
and quarks in a Lorentz invariant way. This process is outlined in the next section for the
case of the electroweak force.

Additionally, the SM contains the Higgs boson. Although this particle has not been
observed to date its existence is assumed where necessary in the remainder of this paper.

2.1.1 TGC Lagrangian

The dynamics of any quantum mechanical system can be described by a Lagrangian 3

(or equivalently Hamiltonian) containing contributions from all of the interacting fields.
Physical particles are then interpreted as quantised excitations of the fields. Mathematically,
each field is represented by a potential function or, more generally, a potential operator. In
relativistic quantum mechanics the Lagrangian is required to be Lorentz invariant* , which
is achieved by writing all of the potentials in the form of four vectors (so that particle ‘X’
enters the Lagrangian as a four-vector potential ‘X#’).

However, if an experiment is carried out at some characteristic energy, E, the existence
of particles with masses, m; , where m; > E may not be discernible ° In this case, there
is an effective Lagrangian which describes the observed low-energy behaviour but does not
contain any explicit references to the high mass particles (i.e. the potentials associated with
the high mass particles are absent from the effective Lagrangian). This is often referred to
as integrating out (or integrating in) the high energy degrees of freedom.

The Lagrangian originally used by Fermi to describe weak decays is one such effective
low-energy approximation. Fermi made the physical assumption that the range of the weak
interaction was small enough to be neglected. In this case, all four of the fermions which
take part in a weak decay must meet at a single point. However, this model is deficient

2The electromagnetic and weak interactions are understood as being parts of a single unified ‘electroweak’
interaction.

8This paper uses the Lagrangian, L, and the Lagrangian density, £, interchangeably. In general L =
f Ld%z.

“More properly, it is the action, S, which is required to be Lorentz invariant, S = fL - dt.

®Particles which are confined by an interaction potential such that they only propagate over characteristic
distances, A, where E < % will also remain unobserved. E.g. quarks in a proton.



as it does not allow either the initial or final states to have orbital angular momenta. As
a consequence, the contribution of the lowest order partial wave to the cross-section ® for
the scattering of electrons, e™, from electron neutrinos, v,, diverges unphysically (violating
unitarity 7).

To remove the divergence it is necessary to hypothesise the existence of the W boson to
mediate the weak decay 8. The creation of an intermediate W boson state is favoured when
the centre of mass energy of a reaction is close to the W mass, m,,. At energies far above
my, the cross-section falls asymptotically to zero in an analogous fashion to the response of
a harmonic oscillator being driven above its resonant frequency.

In the SM, the W and W~ bosons only mix leptons of the same generation. A charged
lepton and its associated neutrino can then be thought of as a two-fold degenerate eigen-
state of the weak interaction. Further weak eigenstate doublets can be formed from linear
combinations of the quark mass eigenstates by a unitary transformation. It is therefore
convenient when considering electroweak processes to write a lepton or quark generation as
a two dimensional column vector.

The vector is a representation of the generation in weak isospin space. The upper
component is conventionally assigned a weak isospin value of +1/2 and the lower component
a value of -1/2. In this abstract space the W boson is a rotation operator which transforms
an isospin +1/2 object into a -1/2 object and vice versa. The process is mathematically
similar to the flipping of an electron’s spin through its interaction with a single photon.

Since two operators are not sufficient to describe a general rotation in a two dimensional
complex space, a third gauge boson, W or W3, is introduced in analogy with the three
Pauli spin matrices needed to generate the rotations of spin % objects in physical space. The
introduction of the third boson is also crucial in preventing further high-energy divergences,
as can be seen explicitly in section 2.3.

If weak isospin is a conserved quantum number then physics (and hence the Lagrangian)
must be invariant under rotations in weak isospin space. This constraint is equivalent to
imposing SU(2) gauge invariance on the Lagrangian. This is in addition to the U(1) gauge
invariance which the Lagrangian must exhibit in order to conserve electric charge.

Equation 2.1 shows a simplified® Lagrangian for a lepton doublet, ¥, interacting with
the three weak gauge boson fields, Wu- The v* are the Dirac matrices 1°. The components
of 7 are the Pauli spin matrices. ¥ is defined as ¥T4?, where  denotes the Hermitean
conjugate.

5The cross-section is defined as the modulus squared of the scattering amplitude integrated over all angles.
This gives the effective area of the incident beams which react to form the specified decay products.

"Unitarity is the requirement that a probability cannot exceed one.

8The first direct experimental evidence for the existence of the W boson was reported by UA1,UA2 1983.

®The V-A nature of the coupling has been ignored.

10Unless otherwise stated, formulas in this paper use the standard convention that Greek indices (B,v,...)
run from one to four and Roman indices (3, j,...) run from one to three.



L o« TyrW,-7U (2.1)

Applying SU(2) gauge invariance to equation 2.1 then generates an extra term which rep-
resents self-interactions between the bosons. This is shown in equation 2.2. Terms which
represent interactions between four gauge bosons at a single vertex have been suppressed.
The third weak gauge boson, W3, has been replaced with a linear admixture of the physi-
cally observable Z° boson and photon, whilst W; and W, have been re-expressed in terms
of W and W~. A, is the usual electromagnetic four-vector potential used in classical elec-
trodynamics. The expression for W3 defines the weak mizing angle, 6,,. For completeness,
the relationship between the primordial electromagnetic field B and the observable Z° and
photon is also shown.

[:EZ;IC\ZC X €45k (O“W;’ - 8VW]H) W]fleV
x [W MW, — WHHW "] (sinfy A, + cos by Z,,)
+ [AMsin6y, + ZM cos 0, ) W, f W, (2.2)

Wt = orWY — ¥WH
Wi = cos0,Z" + sinf, A"
(B¥ = —sin,Z" + cos 6, A*)
1
Wt = 7 (W1 ¥ W72)
Equation 2.2 is the SM Lagrangian for triple gauge boson interactions where the constant
of proportionality is ﬁ.

2.1.2 Feynman Diagrams

Provided that the coupling between particles can be treated as small, a Lagrangian can be
Fourier transformed to momentum space and expanded as a perturbation series in terms of
the coupling constants. Each term in the series can be associated with a Feynman diagram
which provides a topological, classical interpretation for what is actually a quantum me-
chanical event. The contribution to the ete™ — W W ~ process from the TGC interaction
of equation 2.2 can be represented at first order by figures 2.1 a, b.
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Figure 2.1: Tree-level Feynman diagrams showing W W ~ production from the annihilation
of an electron and positron. Diagrams (a) and (b) contain the triple gauge boson couplings
AYWFW~ and Z°W W ~ respectively. Diagram (c) shows the same topology as in (a) and
(b) but evolves through an intermediate Higgs boson state and gives a negligible contribution
to the reaction at LEP2 energies (see main text). Diagram (d) shows the electron and
positron scattering through the exchange of a neutrino. This last diagram is completely
independent of the triple gauge boson couplings.



Feynman diagrams which correspond to first order terms in a perturbation expansion
are generically referred to as tree-level, whilst the specific topology shown is known as s-
channel. The WTW ™ final state can also be attributed to the exchange of a neutrino in
the t-channel configuration shown in figure 2.1 d.

In this paper the mass of the electron, m., is taken to be zero, as it is many orders of
magnitude smaller than the LEP beam energies. However, in a full analysis the introduction
of a finite electron mass requires a coupling to the Higgs boson. For completeness this
diagram is shown in 2.1 c.

In reality it is not possible to specify which Feynman diagram led to the creation of
a particular WTW ™ pair in a particle detector. As the system is quantum mechanical
it evolves through all possible diagrams simultaneously. This is shown in equation 2.3 of
the next section, where the total scattering amplitude is given by the coherent sum of the
individual contributions.

2.1.3 Scattering Amplitudes

The matrix elements (scattering amplitudes) which give the probability of a given initial
state evolving to a given final state in quantum mechanics are found from the perturbative
expansion of the Lagrangian using the Feynman rules. The transition rate (and hence the
reaction cross-section) can then be found from Fermi’s Golden Rule.

The Lorentz invariant scattering amplitudes for the first-order processes shown in figures
2.1 a,b,d are given in equations 2.4, 2.5 and 2.6 in terms of the e~ and e* spinors!! (denoted
u and v), and the W~ and W boson polarisation vectors (denoted e_ and ey). g, is the
Minkowski metric tensor and k, k, g and § are the four-momenta of the e~,e™, W~ and W+

respectively.
Mrae = M'y + Mz + M, (2.3)
uv
M, = ¢ oy | 2]
{€(908(@ — @)v = gaw(a +20)5 + 95,20 + D)™ } (24)
_ 1—+5 g — (k+ k)H(k + k)” /m?
M; = —¢? 1— Z
d ¢ {”’Yu( 45in? 6, } l s —m?2
{efra(gaﬂ(q - Q)V - gau(q + 26)[3 + gﬂu(2q + Q)a)E*—ﬂ} (2'5)

17p relativistic quantum mechanics, the wavefunction for a fermion is not a solution of the time-dependent
Schrédinger equation but of the (Lorentz-invariant) Dirac equation. The eigenstates of the Dirac equation
are referred to as spinors.
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M, = —goaa {pena(l - [7] {751 —5)u} (2.6)
Explicit formulae for the scattering amplitudes in terms of observable quantities are
developed using the helicity formalism in section 2.3.

2.2 Anomalous Couplings

2.2.1 Phenomenological Lagrangian

It was first shown by Hagiwara et al [13] (following from the work of Gaemers and Gounaris [16])
that the most general description of the coupling between three vector bosons (ignoring any
theoretical or experimental constraints) requires a Lagrangian with seven operators. Higher
order operators can be decomposed into linear combinations of these seven, which thus form
a basis set.

The phenomenological Lagrangian is shown below, subdivided into the terms 2.7- 2.13.
V is the four-vector potential of either a Z° boson or a photon, v. In the latter case, V*
can be written as A for consistency with classical electrodynamics. €, is the ‘totally

antisymmetric’ or ‘Bjorken-Drell’ symbol, defined such that %123 = ¢j193 = 1.
LYYV [gwwy = g/ VEWLWT —WiEW™) (2.7)
+ wyWSW, VR (2.8)
Av VAW P - 9.9
+ m2, v " pu (2.9)
+ 1Y €uupe (OPW MW — W H(OPW 7))V (2.10)
+ g W WOV + 0°VH) (2.11)
Rv - vpo
- TWu W;FGH P Vpa (2.12)
Mgy ey, 2.13
g, el Vs (213)

W = 0W,—-0,W,



The standard model Lagrangian is recovered by setting ., %z, 97, g% to one and all other
parameters to zero.

In the phenomenological approach, the coupling constants (g1, K, A, 94, g5, &, 5\) are free
parameters to be fitted to the data.

The terms of the phenomenological Lagrangian can be classified according to their sym-
metry properties under parity 2 | P, and charge conjugation '3 | C transformations. [9].
This information is summarised in table 2.3.

Parameter Violates
C| P|CP

g1

K

A

95 bl i

94 [ ) [ )
Py ° °
A °

Table 2.3: Summary of the symmetry properties of the terms in the phenomenological
Lagrangian under charge conjugation and parity .

It is usual to discard those YW W terms which violate CP symmetry as their values are
heavily constrained by the results of previous experiments. Moreover, the value of g] is
fixed to one. This leaves a total of nine independent parameters to describe the combined
YWW | ZWW vertex.

The CP conserving YW W couplings can be associated with a classical multipole expan-
sion of the W boson. Equations 2.14, 2.15 and 2.16 show the electric charge, the magnetic
dipole moment and the electric quadrupole moment of the W.

qw = eg] (2.14)
e

Pw = %(14‘“7"‘)‘7) (2.15)
e

Qu = —m—%]("‘v_)‘v) (2.16)

12 A parity transformation is the inversion of the spatial co-ordinate system. E.g. in Cartesian co-ordinates
r— —z,y—~ —yand z — —2z.

13A charge conjugation transformation is the replacement of each particle in a Lagrangian with its asso-
ciated anti-particle. E.g. WT = W~ and W~ — WT.

10



All standard model vertices have an energy dimension of four'4, i.e. they can be written with
units of eV4. Such vertices are renormalisable (do not give divergences at high energies)
and occur naturally in gauge symmetric theories. In the phenomenological TGC Lagrangian
all terms are of dimension four except for the two gquadrupole terms, Ay, Ay, which are of
dimension six.

2.2.2 Theoretical Origins of Anomalous Couplings

It is advantageous to reduce the number of free parameters in the phenomenological La-
grangian to simplify the procedure of determining the parameters from the data. It has
been shown [3] that it is insufficient to impose gauge symmetry, as all of the terms (2.7-2.13)
can be made SU(2) ® U(1) gauge invariant (and hence renormalisable) with the addition
of extra terms of higher dimension.

An alternative method, introduced by Buchmuller and Wyler [14], is to construct all
possible SU(2) @ U (1) gauge invariant operators from the SM fields. An effective low-energy
Lagrangian is then constructed using only those operators of dimension 6 or lower. This
approach is based on the premise that new physics occurs at some energy scale, Ayp, far
above myy. In this case, higher dimensional contributions to the Lagrangian are suppressed
by a factor of 1/Axp and can be ignored.

In most contemporary papers (eg [5],[14],[15]) the mass of the Higgs boson, my, is taken
to be small compared to A p. This assumption leaves three terms (shown in equation 2.17)
which generate anomalous triple gauge boson couplings!® but are relatively unconstrained
by current measurements([5]. ® is the Higgs doublet'® | which can be replaced by its vacuum
expectation value in order to compare equations 2.17 and 2.7.

o I
LnpTcc = 2 I;W(DHCI’)TT‘W (D,®)
myy

g,O(B¢, T puv
+ 1 32 (Du‘I)) B*(D,®)
w

gow K 2V =P
o W, (W, xW,) (2.17)
w

W) = 9w —a,w) — gethw Dk

“In natural units (h = ¢ = 1) all other units are reduced to some power of the unit of energy.

5Higher order couplings are also generated.

The Higgs doublet is a two dimensional column vector in weak isospin space, one component of which
is conventionally set to zero by a redefinition of the co-ordinate system in a process known as ‘spontaneous
symmetry breaking’.

11



B, = 9,B,-0,B,
D@ = 9,2 +157 W@ —1inB,e

The relation between the coefficients ayw, awg and apg and those of the previous section
are shown below.

aw = Ay (2.18)
- Ay
awg = sin? Owky + cos? Opky — 1 (2.19)
apy = cot? 0y (cos? 0,97 — Ky + sin? 0,,) (2.20)
where
cos? Oy - (97 — kz) = sin?8y - (ky — 1) (2.21)

Contributions to ay would be generated by either a boson or fermion field operating at
the new physics scale[5]. More complicated interactions would be needed to generate ayy
and apg.

If the Higgs boson does not exist or else has a mass comparable to Ayp then different
terms are induced, whose largest effects will be upon the coupling of the longitudinally®”
polarised gauge bosons [12].

If the new physics energy scale is not large with respect to m,, then higher dimension
operators can no longer be ignored. This would be the case if, for example, there exists a
Z' boson of a mass comparable with the Z°[10].

2.3 Helicity Formalism

The helicity formalism[17] is a useful convention for analysing the spin states of particles
in a reaction. Rather than expressing the spin vectors with respect to a fixed frame of
reference, the helicity of a particle is given by the projection of its spin, s, onto its direction
of motion, p (equation 2.22).

h = Hﬁ (2.22)

17, ongitudinal polarisation is equivalent to the requirement that the spin vector of a particle is orthogonal
to its direction of motion.

w)

12



This is particularly pertinent in the case of the decay of a W boson to two fermions, as
the fermions are produced in fixed chiral states ‘8.

The scattering amplitude for a final state of definite helicity is known as a helicity
amplitude. Equations 2.23, 2.24 and 2.25 show the helicity amplitudes for the production
of on-shell ¥ W+W ~ bosons derived for the tree-level Feynman diagrams in figure 2.1.

The amplitudes depend only on the variables 8, A1, Ao, 01, 09, 7, B, the SM parameter
0, and the masses of the particles involved. 6 is the W~ production angle with respect
to the incident e~ beam direction. A1, A2, 01 and oy are the helicities of the W=, W, e~
and e respectively. v is the Lorentz factor for either the W~ or W' (y = Ey— /my— =
Eyw+/myy+) and [ is the associated velocity in units of c. 6, is the weak mixing angle
introduced in equation 2.2.

M = M,+Mz+ M,

_ 25 1 1
M, =
" 2 1+ 1+ )
{ (1 — o109) [ (Arde(1 + Athe) — (292 + (A2 — 1)(A2 — 1)) sin @
+ 29(a(1 = 23) + Xa(1 = 2]))cost |
om0t | (2.23)
M, - e’ meyy”

1 1
8sin?6, m2~y? —m? \/l—i—)\% \/1+)\%
{ (1 —0109) [ (4sin® 0, — 1)

(A2l +Xx2) = (29 + 1)(A] — 1)(A3 — 1)) sin6
+ 27(A(1=23) + X2(1 = A7)

+ 2901 -2 ]
+

(01— 02) [ (4sin? 6, — 1)2(A] = A3)

18Chiral states and helicity states are equivalent for particles with a large Lorentz factor, .
19¢On-shell’ particles obey the relativistic energy equation, m?> = E? — p®. Particles which do not obey
this equality are known as ‘virtual’ and cannot propagate in free space.

13



+ AT+ M) — (22 +1D)(A2 —1)(\3 — 1)) sinb

+ 2y (1=23) + 21 -2D) ] } (2.24)

M - e2(1+ 02)(1 — oy) 1 1
o= 4B5sin? 0, VI+A /1423
1

{ ()‘%_1)()\%—1) < 72(1+ﬂ2—2ﬁcos9) —’}/2> sin 6

2 4 B(Aa — A1) — M\ :
+ A%)‘g ( 5 —;f(ﬁ;_zé)cosel 2 +)\1)\2> sin 6
1-\
+ (A%—1)A2<7(1+62_;g6089) —7> (cos @ + Ag)
A
+ (A§—1)A1<7(1+2j_;g6089) —7> (cos 6 — A1) } (2.25)

The W bosons have a spin of one and hence A; and A2 may take the values +1,0, —1.
(The positive and negative helicity states correspond to transverse polarisations and the
zero helicity state corresponds to longitudinal polarisation.) The electron and positron are
fermions with a spin of one half: but, in order to simplify the algebra, ; and o3 have been
defined to take the values 41 rather than :l:%.

With these conventions the amplitudes are all zero unless | 017 — o9 | is equal to two,
which corresponds to there being one unit of angular momentum either parallel or anti-
parallel to the e~ beam direction. This constraint is present in both the s-channel and
t-channel but arises through two different mechanisms.

The s-channel contributions, M, and My, are constrained because they evolve through
an intermediate gauge boson (a photon and a Z° respectively) which itself has a spin of one
20 However, the t-channel, M, is constrained not by its topology but by the nature of the
W boson coupling to fermions 2. Moreover, the couplings further restrict the t-channel to
only give a contribution in the anti-parallel case mentioned above. It is also worth noting
that the Z° part of the s-channel shows a less severe form of this asymmetry, as it has larger
couplings in the anti-parallel case than in the parallel case. This is a comparatively small,
although important, effect at LEP2 energies.

The high energy limit corresponds to: s — oo, 8 — 1, v = 0o. Applying these trans-
formations to the matrix elements, the gauge cancellations between the three contributions

*0There can be no orbital angular momenta in the s-channel as the annihilation of the electron and positron
occurs at a point.

*Tn the relativistic limit the W boson couples only to negative helicity electrons and positive helicity
positrons.

14



give M — 0 for all helicity states. This is demonstrated in equation 2.26 for the example
Of)\l = )\2 = 1, o1 = —1,0’2 =1.

My, =1 p0=1,01=—1,00=1 = —e2ﬂ sin 6
2,2
2 VM 1 ) .
+e 1— — sin 6
ﬂ’YQm%, —m? ( 2sin” 6,

+e2 1 (1 1 1 ),0
—-——(1-= sin
B 2sin? 6, v2 1+ 32 —2Bcosh

¥ _e?.1-sinf
1
+e2-1-1- (1—m>sin9
+e2-l-m-l-sin9
— 0 (2.26)

2.4 Angular Distributions and Cross-sections

The differential cross-sections calculated from the helicity amplitudes of the previous section
are shown in figure 2.2.

It can be seen that the dominant contribution to the total cross-section comes from the
two helicity states with [A—\| = 2. These states have two units of spin angular momentum?2
and can only be generated through the t-channel neutrino exchange diagram (sections 2.1.2
and 2.3) and are not themselves affected by changes to the TGC’s.

The seven helicity amplitudes which can be generated through the s-channel (in addition
to the t-channel) represent the same degrees of freedom as the seven parameters in the
phenomenological Lagrangian of equation 2.7. Sensitivity to TGC’s at LEP2 comes mainly
from the interference terms between the dominant t-channel background and the smaller
s-channel signal.

Figure 2.3 shows the W~ cross-sections averaged over the W™ degrees of freedom. The
large asymmetry of the distribution in the W~ production angle, 0, is a direct consequence
of the prevalence of the t-channel 2* which tends to favour scattering through small angles
24 This, combined with the fact that the t-channel only contributes when the electron is

22The projection of the total angular momentum onto the beam axis still has to be equal to one.

23The s-channel distribution alone (summed over all helicity states) would be symmetric about § = 5

24Scattering through large angles in the t-channel requires the exchange of a neutrino with high momentum
but negligible energy. Such a neutrino is highly virtual (far from mass-shell) and its production is therefore
suppressed. This is encoded into the expression for M, in chapter 2.3 by the ‘1 + 8% — 23 cos#’ term which
appears in the denominator.

15



itself in a negative helicity state, explains the dominance of the negative helicity state of
the W~ boson.

The shape of the angular distribution of any individual helicity amplitude is independent
of the anomalous couplings, which only vary the relative strengths of the amplitudes. Table
2.4 shows these anomalous coupling prefactors.

X
1 0 11
1| gt 2+ g (v =) —dv) |y (av - Bel 40 (25 - o) ) ) 0
Al o | —y (av +ﬂ95"+1(% +9X)) gv — 272Ky — (GVfﬂgé’Jrz(@ +9X))
+1 0 ’Y(GV +Bg;’+z(@—g}{)) g¥+2)\V72—§(S\V(272—1)—Rv)

Table 2.4: The anomalous coupling dependence of the WTW ™~ helicity amplitudes, My,

where V = Z or 4. X and ) are the helicities of the W~ and W™ respectively and ay =
%

91 + Ky + )\V.

The total angular distribution is formed from a coherent sum over all the helicity am-
plitudes and thus its shape does depend on the anomalous couplings. The same argument
applies to the distributions of the W~ helicity states averaged over the W™ helicity states.
The influence of the couplings is indicated in table 2.5, which gives a crude measure of the
relative sensitivity of the W~ distribution to individual anomalous TGC’s.

Helicity glz Ky Kz Ay Az Kz XZ g4Z g5Z
All 64.3 | 61.8 | 61.5 | 61.5 | 60.9 | 62.5 | 66.2 | 65.7 | 64.7 | 64.6
-ve 53.9 | 52.9 | 52.9 | 53.2 | 52.9 | 563.4 | 55.3 | 54.7 | 54.1 | 53.5
+ve 86.6 | 82.5 | 85.3 | 83.8 | 85.3 | 81.0 | 87.4 | 87.3 | 86.8 | 88.3
0 70.3 | 64.9 | 62.5 | 62.6 | 60.1 | 67.1 | 72.3 | 72.3 | 70.9 | 70.7

Table 2.5: Effect of increasing anomalous couplings by 0.5 upon the average W~ production
angle in degrees. The first column of values are those from the SM. The first row of values
shows the average angle obtained when all W~ helicity states are included in the calculation.
The rows beneath show the average angle obtained for each helicity state individually.

In practice, all of the parameters must be fitted to the data simultaneously. This requires
as much information as possible on the W production angle and its spin or helicity state.
The process of obtaining this information is outlined in chapter 3.
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The magnitude of the total cross-section is also affected by the anomalous couplings.
It can be written (equation 2.27) as a sum of contributions from the terms in the phe-
nomenological Lagrangian. As the Lagrangian, and hence the amplitudes, are linear in the
anomalous couplings, the cross-section is quadratic in them.

g = inxjaij (2'27)
i
v € {Agf, Aky, Az, ANy, ANz, Az, Az, Agf, AgZ, Asw

Here Agjys is a dummy variable equal to one in the standard model.

The coefficients, 0;;, can be represented by the (non-unique) matrix, o, given in equation
2.28. Since the total cross-section is obtained by integrating over all kinematic variables
and summing over all helicity states, the components of o are simply numbers.

Agf Ak, Akz AN, Alz ARz Az Agf Agé Asy

[.025 .003 .041 .004 .072 .000 .000 .000 .000 -.001 W Agf
.000 .014 .004 .038 .002 .000 .000 .000 .000 -—.015
.000 .000 .029 .006 .031 .000 .000 .000 .000 -—.004 Aky
.000 .000 .000 .028 .002 .000 .000 .000 .000 —0.20 AN,

7= .000 .000 .000 .000 .072 .000 .000 .000 .000 .003 AXgy
.000 .000 .000 .000 .000 .082 —.130 .000 .000 .000 ARz
.000 .000 .000 .000 .000 .000 .056 .000 .000 .000 AXg
.000 .000 .000 .000 .000 .000 .000 .015 .000 .000 Ag?

.000 .000 .000 .000 .000 .000 .000 .000 .004 -—.002 Ag?
.000 .000 .000 .000 .000 .000 .000 .000 .000 .300 J Agsu

(2.28)
The matrix has been normalised by the arbitrary constraint in equation 2.29.
doloij| =1 (2.29)
i,j

The values in the array were calculated assuming a semi-leptonic tau decay mode for
the W bosons (chapter 3) and including contributions from the left-handed helicity state of
the tau only. Values for other decay modes will be similar.
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Figure 2.2: SM prediction of differential W W ~ production cross-section for specific helicity
states at 189 GeV as a function of the cosine of the W~ production angle with respect to
the e~ beam direction. A and X are the W~ and W™ helicities respectively.
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states at 189 GeV as a function of the cosine of the W~ production angle with respect to
the e~ beam direction. The black line shows the sum of the three helicity states.
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Chapter 3

WTW~— — qgrv; Decay

A W boson can decay either leptonically or hadronically. In either case the decay distri-
butions depend on the direction of the spin vector of the parent W boson. Equivalently,
the distributions depend on the relative proportion of the helicity states in the W boson’s
wavefunction. In this paper I consider a specific semi-leptonic decay for W W ~ events, in
which one W decays to two quarks and the other to a tau and tau neutrino. This channel
has a branching ratio of approximately 15%.

The hadronic decay cannot be treated using the perturbative method as the strong (colour
field) interaction between quarks increases monotonically as a function of the quark sepa-
ration. As the original quarks are separated, further quark anti-quark pairs are produced
in a process known as hadronisation. This results in the formation of hadronic jets from
which we can attemp to reconstruct the direction of the original W boson.

The neutrino produced in the leptonic decay is not expected to be detected, as it has
a low interaction cross-section with conventional matter. This leaves the charged lepton as
the only available source of information on the helicity of the W boson. In the case of the
tau leptonic decay the tau is itself unlikely to be observed as it has a mean decay length of
less than 4mm at LEP2 energies [7]. This is outside the instrumented volume of the OPAL
detector (i.e. within the beam pipe)®.

Therefore, the W and tau production angles have to be reconstructed from measurements
of the energies and directions of the hadronic and tau jets. A method for partially recovering
the tau angle for the case where the tau jet consists of a single pion is given towards the
end of this chapter.

For reference, the general kinematics of a gGrv,; event are shown in figure 3.1.

!The inner radius of the silicon microvertex detector is 53.5mm.
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X=m,e,U, ..

Figure 3.1: Kinematics of a generic WTW ™~ — ¢gr~ i, event, where X represents the
observable decay products of the 7.
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Figures 3.2, 3.3 and 3.4 show first-order, standard model predictions of the relative
differential cross-section for ete™ — WTW ~ — qgr ¥, events at 189 GeV as a function
of the W~ and 7~ production angles. These plots were generated in the mathematical
analysis package ‘Maple’ using the density matrix formalism of Appendix A. The polar
tau production angle, 6., is calculated with respect to the W~ direction. The azimuthal
tau production angle, ¢, is calculated with respect to the plane defined by the e~ beam
direction and the W~ direction. Strictly, the y-axis of this co-ordinate system is defined by
the cross-product of these two directions in the order stated. 2

The scale used for the vertical axis in the figures is arbitrary but consistent. It can
readily be seen that the production of positive helicity taus is heavily suppressed compared
to the production of negative helicity taus. This is a consequence of the V-A (vector minus
axial-vector) form of the coupling between the W boson and the 7 lepton.

Figure 3.2 shows that the majority of W~ bosons and 7~ leptons are produced close to
the e~ beam direction. The behaviour of the W~ boson has already been explained in sec-
tion 2.4 as a consequence of the t-channel contribution to the amplitudes. The shape of the
7~ distribution can be understood from noting that both the 7= and W~ are preferentially
produced in the negative helicity state. Angular momentum conservation then requires that
the 7~ be emitted along the W~ direction of motion (i.e. in the opposite direction to the
W~ spin vector).

Both the s-channel and t-channel have an azimuthal dependence in ¢, and the definition
given above ensures that the differential cross-section is symmetric about ¢, = 0, 7. How-
ever, the exact form shown in figures 3.3 and 3.4 comes from the complicated interference
between the two channels.

Details of the effects of anomalous couplings upon these distributions are given in Ap-
pendix B.

2Both the polar and azimuthal production angles of the tau lepton are boosted to the W™ rest frame.
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Approximately 10% of tau leptons decay to a tau neutrino, v, and a pion, w. The
theoretical treatment of this decay mode is particularly simple as it is a two-body decay
with no intermediate resonances to consider.

It is usual to approximate the direction of the tau by the direction of the tau jet [1].
However, as the pion mass (m, = 0.14GeV) is only 8% of the tau mass, it is highly boosted
in the tau rest-frame3. As it is also a scalar particle, its angular distribution is expected to
show high sensitivity to the tau polarisation®.

Therefore, the angle between the pion direction and the original tau direction in the
lab frame, 6., cannot always be treated as negligible. The mean, standard deviation
and maximum values for 6., at 189 GeV are: 0,, = 3.8°,0,r = 0.9° and omar = 28°.
Fortunately, this angle is strongly correlated with the energy of the pion in the lab frame,
E,. An analytical expression for this relationship has been evaluated and the result is
plotted in figure 3.5.

In addition to knowing the magnitude of the deviation between the tau and the pion,
it is necessary to know in which direction the deviation took place. Equations 3.1 to 3.7
show how the angle between the tau lepton and W boson in the lab frame can be estimated
from measurements of the pion and W boson paths® and the function, f(Ey,6.), shown in
figure 3.5. I, is the position vector in the lab frame for a point on the paﬂ:h of particle ‘x’,

parameterised by a distance )\,. d, is an arbitrary point on the path and d, is the direction
vector of unit length. The origin of the co-ordinate system is defined as the W+, W~
production point. It is assumed that the tau lepton path also begins at the origin since the
mean distance travelled by each W boson before it decays is negligible (around 6 x 1071"m
at 189 GeV).

Li = @p+ Apdy (3.1)
ly = Awdy (3.2)
l, = Ad, (3.3)

The paths of the pion and tau are constrained (equation 3.4) to cross at some point
parameterised by a distance, A/, along the pion path (from point @) and a distance, .,

along the tau path (from the origin).

8The velocity of the tau in the W rest frame is approximately 0.999¢. The velocity of the pion in the tau
rest frame is approximately 0.988c.

“The transition rate for the single pion decay of a negative helicity tau is proportional to (1 — cos 6,),
where 0 is defined with respect to the direction of motion of the tau. I.e. Most pions are emitted ‘backwards’
in the tau rest frame.

®The W boson path is reconstructed from the hadronically decaying W.
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Figure 3.5: Angle between 7 and 7 in the lab frame as a function of the energy of the pion,
E,, and the tau production angle 6, . The peak at low energy for tau leptons travelling
backwards with respect to the W boson direction is resolution limited in this plot.
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LOG) = L) (3.4)

Substituting equations 3.1 and 3.3 into equation 3.4 and then taking the scalar product
with the pion and W direction vectors gives equations 3.5 and 3.6.

=N (d, -dr) = @r-de+ N, (3.5)
MN(dy - dy) = @p-dy+ N (dy-dy) (3.6)

Eliminating A/ and rewriting some of the scalar products in terms of cosines gives

equation 3.7.

—

Gr - dy + (A cos OEAB — @, - d) cos LB

= cospLAB = Y (3.7)
971'/7}4B = f(Enr,0r) (3.8)
~ f(Ex,0x) (3.9)

AL is the distance travelled by the tau lepton before it decays to the pion, as given by
equation 3.10.

1 |Gr X dn|

A = W (3.10)
Figure 3.6 compares those values obtained for the angle between the tau lepton and W
boson in the lab frame using equation 3.7 with those obtained from the assumption that the
pion and tau directions are identical. The former method shows a large improvement over
the simpler approach (the standard deviation is reduced to 0.61° from 3.65°). It is hoped
that further work in this area will give better reconstruction of the tau direction for all the

tau decay channels and hence increase the sensitivity to anomalous TGC’s.
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Chapter 4

Conclusions

This paper has reviewed the concept and properties of anomalous triple gauge boson cou-
plings and their parameterisation in the Lagrangian for W*W ~ production at LEP2.

Tree-level standard model predictions of the distributions for W~W* production and
subsequent semi-leptonic decay to a tau lepton have been presented. The dependence of
the distributions on the nine parameters commonly used in the literature to describe the
most general possible YWW /| ZWW vertex has been explored and analytical expressions
calculated.

Finally, in order to enhance the sensitivity of the analysis of LEP2 data to anomalous
TGC’s, an improved method for extracting the angle of the tau from the angle of its decay
products has been introduced.

It’s hoped that this paper will prove to be a useful reference for future investigations of
the q@rv, channel, as much work remains in improving the reconstruction of these events.
At present, neither the method for recovering the W boson direction (not presented here)
nor that for recovering the 7 direction appear to be optimal. Other questions that have not
yet been addressed include:

e Whether the small positive helicity tau contribution may carry valuable, measurable
and as yet un-modelled information on anomalous TGC’s.

e Whether the hadronic jets can be used to recover helicity information for the hadron-
ically decaying W boson.

e Whether an optimal observables method [7] can be developed for this decay channel.

e What applications the kinematic analysis used to to generate the results in this paper
may have in the process of discriminating ¢grv, from other channels.
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Chapter 5

Appendix A: The Density Matrix

The density matrix describes physical states which are both statistical and quantum me-
chanical in nature. The wavefunction of a pure quantum mechanical system, ¥, can be
expressed as a coherent sum over a complete set of accessible eigenstates, ¢;, as in equation
5.1.

n
i=1
The expectation value of some observable, O, is shown in equation 5.2.
n n
<O0> = Y > aa; < ¢0|p; > (5.2)
i=1j=1

A more general system may be in one of N different quantum mechanical states, ¥y,
with some statistical probability, p;. The expectation value for O for such a system is shown
in equation 5.3.

N n n
<O0> = > > > aikajipk < ¢ilOl; > (5.3)

k=1i=1j=1

This situation can arise where we do not have complete knowledge of a system’s history.
In the case of WTW ~ production at LEP2 the initial e*e~ polarisations for a particular
event are unknown. The resulting W pair system is therefore in one of two possible pure
quantum mechanical states .

! Although there are four possible polarisations for ete™ only two of these can result in a W pair at tree
level.
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Equation 5.3 can be rewritten as in equation 5.4, where the entity, p, is the density
matrix for the basis ¢, shown explicitly in equation 5.5.

<O> = 3 > pij <ilOle; > (5.4)
i—1j=1
N
Pii = D ik kDk (5.5)
k=1

Calculations carried out in this paper use the density matrix with a basis of helicity
eigenstates. The WTW ~ density matrix is found using equation 5.6 which relates it to the
ete™ density matrix through the helicity amplitudes, M, of section 2.3. Assuming that the
electrons and positrons are unpolarised, their density matrix, pi;;;a’l b is just the 4 x 4
identity matrix and equation 5.6 reduces to equation 5.7.

o +o
pg\}‘i,)\??)\’l,)\’z = Z M()‘la)‘%ala(f?) ’ M*( ,la /2’011’012) ’ pilirz;a’l,a’z (5'6)
01,02;07,0%
= Z M(}\]_,)\Q,O‘]_,O‘2) M*( 117A1270-170-2) (57)
01,02

The differential cross-section for a specific helicity state is just given by the appropriate
diagonal element from the W W ~ density matrix, as shown in equation 5.8. The constant
of proportionality is the reciprocal of the trace of the ete™ density matrix (i.e. in this case

. 1
simply 7).

deW W™ for—
(7(19 o PKZ,,\I;I;/AI,AZ (5.8)
A1,A2

The tau lepton density matrix is generated in an entirely analogous way; the general
form of equation 5.6 is used to relate the tau matrix to the W W~ matrix through the tau
production helicity amplitudes.
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Chapter 6

Appendix B: Anomalous
Contributions to the ¢q7v;
Differential Cross-Section

Following the convention of equations 2.27 and 2.28 the differential cross-section for ete™ —
WTW ™ — qgr~ v, events can be written as a sum of contributions from the terms of the
phenomenological Lagrangian. This is shown explicitly in equation 6.1 where €2 is taken to
be (¢, - cos b - cos6).

do
d_Q = inxj 80@' (6‘1)
.J

vi € {Agf Any, Arg, ANy, ANz, Afiz, Az, Agf, AgZ, Asw |

Setting Agps to one and assuming that terms which are second order in the anomalous
couplings are small reduces equation 6.1 to equation 6.2.

2 = Ywie (6.2)

Once the ¢, and W+ ! dependence has been integrated out the do; can be written as a
finite power series in the cosines of the W~ and 7~ production angles as in equation 6.3,
where ‘n’ runs between zero and four inclusive and ‘m’ runs between zero and two inclusive.

NM
do; X (by —bycosf) = Z agf,)n x cos™ @ x cos™ 0 (6.3)

nm

1For this calculation the W™ boson is always assumed to decay hadronically.
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This summation on the right-hand side is related trivially to a two dimensional Fourier
transform. .

The values of the coefficients, a%)n calculated at 189 GeV from the tree-level Feynman
diagrams are shown in table 6.1 2. At this energy b; and by take the values 1.28 and 1.05
respectively. The expression for do associated with Agys has been multiplied by an extra
factor of (by — by cos ) to give it the same form as the other expressions.

nm | 00| 01] 02] 10| 11] 12| 20
Ag? |-.080 | -.146 | .012 | .167 | -.138 | -.010 | .002
Ak, |-.130]-.091 | .085 | .210 | -.044 | -.212 | .040
Akg | -113 | -.146 | .074 | .258 | -.138 | -.289 | .034
AX, | -195]-.091 | .150 | .372 | -.044 | -.375 | .105
AXg | -.078 | -.146 | -.039 | .229 | -.138 | .260 | .000
Akz | .000 | .000 | .000 | .000 | .000 | .000 | .000
AXz | .000 | .000 | .000 | .000 | .000 | .000 | .000
AgZ | .000 | .000 | .000 | .000 | .000 | .000 | .000
AgZ |-.077 [ -.021 | .000 | -.073 | -.016 | .000 | .223

| Asy | 766 | 206 | .337 | -.363 | 1.119 [ .239 | -.205

lnom | 21| 22] 30] 31| 32[ 40| 42|
Ag? | 424 ]-.012| .062 | .000 | .010 | .000 | .000
Ak, | .230 | -.085 | -.033 | .000 | .212 | .000 | .000
Akyz | 424 | -.074 | -.029 | .000 | .289 | .000 | .000
AX, | 230 [ -.150 | -.196 | .000 | .375 | .000 | .000
ANz | 424 ] .039 | .000 | .000 | -.260 | .000 | .000
AKz | .000 | .000 | .000 | .000 | .000 | .000 | .000
AXz | .000 | .000 | .000 | .000 | .000 | .000 | .000
AgZ | .000 | .000 | .000 | .000 | .000 | .000 | .000
AgZ |-.021] .000 | .000 | .137 | .000 | .000 | .000

Asy | 552 [ -.241 | -.012 | -.637 | -.239 | -.049 | -.096

Table 6.1: The coeflicients, a,y,, from the expansion of the differential cross-section in
terms of the anomalous couplings and the cosines of the W~ and 7~ production angles at
189 GeV. Only the left-handed helicity state of the tau leptons has been considered.

2Note that a4,1 is always zero.
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The contour plots in figure 6.1 show the distributions associated with each anomalous
coupling, except for Kz, Az and g# which give no contribution. The plots are of the ratio
of the anomalous distributions to the standard model distribution. The hyperbolic tangent
has been taken to prevent the sharp peaks that typically occur near cos@ = cosf, = +1
from obscuring more subtle features.

Although the behaviour is complicated it can be seen that Ak, and Axz tend to interfere
destructively, such that a positive deviation of one will tend to hide a positive deviation of
the other. The same is true of A\, and A)z.

The three couplings which do not give contributions are CP violating (see table 2.3). Their
presence is only discernible from the ¢, distribution. The relevant contour plots are shown
in figure 6.2 and can be seen to be anti-symmetric about ¢, = w. (The hyperbolic tangent
is not taken for these plots.)
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Figure 6.1: Contour plots of the hyperbolic tangent of the ratio do’/dc®SM. cos runs
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